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FINITE PLANE STRAIN
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A general theory of plane strain, valid for large elastic deformations of isotropic materials, is
developed using a general system of co-ordinates. No restriction is imposed upon the form of
the strain-energy function in the formulation of the basic theory, apart from that arising naturally
from the assumption of plane strain. In applications, attention is confined to incompressible
materials, and the general method of approach is illustrated by the examination of a number of
problems which are capable of exact solution. These include the flexure of a cuboid, and of an
initially curved cuboid, and a generalization of the shear problem.

A method of successive approximation is then evolved, suitable for application to problems
for which exact solutions are not readily obtainable. Attention is again confined to incompressible
materials, and the approximation process is terminated when the second-order terms have been
obtained. In considering problems in plane strain, complex variable techniques are employed and
the stress and displacement functions are expressed in terms of complex potential functions. In
dealing with finite elastic deformations, a complex co-ordinate system may be chosen which is
related either to points in the deformed body or to points in the undeformed body, and in the
present paper both methods are developed. The theory is applied to obtain solutions for an infinite
body which contains either a circular hole or a circular rigid inclusion, and which is under a
uniform tension at infinity.

1. INTRODUGTION

In the theoretical treatment of large elastic deformations of highly elastic, incompressible,
isotropic materials, a number of problems have been solved completely by Rivlin (19484
to 1953) and by Green & Shield (1950, 1951), without any restriction either upon the form
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182 J. E. ADKINS, A. E. GREEN AND R. T. SHIELD

of the strain-energy function for the elastic material, or upon the magnitude of the deforma-
tion. The determination of these exact solutions has depended essentially upon the ability
to choose suitable co-ordinate systems in which to specify the initial and final configurations
of the elastic body, so that in the subsequent analysis, partial differential equations can be
avoided. Further solutions for thin sheets of isotropic materials have been obtained by
numerical methods by Rivlin & Thomas (1951) and by Adkins & Rivlin (1952), but here
again the successful treatment of such problems has depended upon the existence of
conditions of symmetry which render the unknown quantities functions of one independent
variable only.

In the absence of such symmetry conditions, or when a simplifying choice of co-ordinate
systems does not appear possible, it is natural to consider methods of successive approxima-
tion, by means of which solutions can be obtained, which, although not valid for an un-
restricted range of deformation, nevertheless provide an extension of the results of the
classical infinitesimal theory of elasticity. Second approximation solutions for comparatively
simple deformations of compressible materials have been given by Murnaghan (1937, 1951),
and by Green & Wilkes (1953), and second-order effects in the torsion of cylinders of
incompressible materials have been considered by Green & Shield (1951) using complex
variable techniques. More recently Rivlin (1953), using a rectangular Cartesian co-
ordinate system, has developed a general method for the solution of problems in second-
order elasticity theory, and has applied his method to consider the torsion of cylindrical
tubes and rods of compressible and incompressible materials.

In the present paper a general method of successive approximation is evolved for problems
in plane strain for which there are various simplifying features. In particular, it is shown
that the assumption of plane strain implies a relationship between the strain invariants, as
noticed by Murnaghan (1951), and for an incompressible material the strain-energy func-
tion may then be considered as a function of a single strain invariant /. The introduction
of the Airy stress function ¢ to satisfy the equations of equilibrium results in a further
simplification of the theory. The work of §§4 and 5 on the Airy stress function, valid for
finite deformations, follows the development given by Green & Zernat for classical theory.

Before proceeding to approximation methods the general theory of plane strain super-
posed on uniform extension is developed in a general co-ordinate system for large elastic
deformations (§§3 to 5). In subsequent sections attention is confined to incompressible
materials, and to illustrate the general method of approach several problems are considered
which are capable of exact solution. These include the problem of simple flexure (§6)
previously treated by Rivlin (1949%,¢) and a generalization of this problem (§7) which
contains, as special cases, the inflation and the eversion of a cylindrical tube. The latter
problems have also been solved in a different manner by Rivlin (1949¢). In the following
section (§ 8) the generalized shear of a cuboid of incompressible material is considered.

In developing a method of successive approximation, it is assumed that the stress and
displacement functions may be expressed as power series in a characteristic real parameter e,
the choice of this parameter depending upon the problem under consideration. By
expanding the equations of equilibrium, incompressibility condition and boundary con-
ditions in terms of this parameter, and considering separately the coefficients of corre-

1 Theoretical elasticity (in the Press).
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ON FINITE PLANE STRAIN 183

sponding powers of ¢ in these equations, a series of relations is obtained for the determination
of successive terms in the expansions for the stress and displacement functions. In the
present paper attention is confined to terms of the first and second orders only, for which
the form of strain-energy function suggested by Mooney (1940) is sufficiently general, but
in principle the process may be continued until any desired degree of approximation is
obtained.

For two-dimensional problems there are considerable advantages in formulating the
theory in complex variable notation. Explicit expressions for the stress and displacement
functions can then be obtained in terms of complex potential functions, two additional
functions being introduced for each succeeding stage of the approximation process. These
functions are chosen to satisfy the boundary conditions for the problem under consideration,
and this procedure forms a natural extension of the corresponding methods of the classical
infinitesimal theory of elasticity (see, for example, Muschelisvili 1932, 1933; Green 1942;
Stevenson 1943, 1945, etc.). In considering finite deformations, however, the complex
co-ordinate system may be related either to points in the undeformed body or to points in
the deformed body, the choice for any particular problem depending upon the nature of
the boundary conditions. The latter choice of co-ordinate system yields equations which
are somewhat simpler in form and is considered in §§9 and 10. The corresponding theory
for complex co-ordinates in the undeformed body is developed in §§11 and 12.

In the final sections of the paper the theory is applied to obtain solutions for an infinite
body which contains either a circular hole or a circular rigid inclusion, and which is
subjected to a uniform tension at infinity.

2. NOTATION AND FORMULAE

We briefly summarize the notation and formulae which have been used by Green &
Zerna (1950) and Green & Shield (1950, 1951) and which will be required in the present
paper.

The points of an unstrained and unstressed body at rest at time ¢ = 0 are defined by
a system of rectangular Cartesian co-ordinates x; or by a general curvilinear system of co-
ordinates ¢;. The curvilinear co-ordinates #;, move with the body as it is deformed and
form a curvilinear system in the strained body at time ¢ The covariant and contravariant
metric tensors for the co-ordinate system 6 in the unstrained body are denoted by g;; and
gV respectively, and for the co-ordinate system in the strained body, at time ¢, the corre-
sponding metric tensors are G;; and G respectively, whilst

g=lg;l, G=|Gy| (2’1>
Latin indices take the values 1, 2, 3. The strain invariants are
I =giGy;, I,= L,g,;GY, Iy=Gg, (2-2)

and the contravariant stress tensor (per unit area of the strained body) referred to 6; co-
ordinates in the strained body can be expressed in the form

79 = gi®+ BV + Gip, (2:3)

24-2
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184 J. E. ADKINS, A. E. GREEN AND R. T. SHIELD
for a body which is isotropic and homogeneous in its undeformed state, where
20w . 2 0W N ow
(D——ﬁs‘ﬁ;, FM\/_I;TIZ’ 2«/[33] > (2:4)
BI = gil, —gghG,, = ey, G, (25)
and W = W([lalza ]3)9 (26)

is the strain-energy function measured per unit volume of the unstrained body. Also e
is equal to 41 or —1 according as ¢, 7, m is an even or odd permutation of 1, 2, 3, and equal
to 0 otherwise.

With the above notation one form of the equations of equilibrium is

7, =0 (2-7)

when body forces are zero, where the double line denotes covariant differentiation with
respect to the deformed body, that is, with respect to §; and the metric tensor components
G,;, GY. For this covariant differentiation we need the Christoffel symbols

ijs
Pr — 1Gas(G +G —G.. ), (2‘8)

Sty J if 5

where a comma denotes partial differentiation with respect to §,. An alternative form of the
equations of equilibrium which is needed in this paper is

Tz',i =0, (2’9)
where T, = /(GG t, = J(G) TijEj, (2-10)

and E; and E/ are covariant and contravariant base vectors in the deformed body. In (2-10)
t; denotes the stress vector associated with the surface f; = constant. If t is the stress vector
associated with a surface in the deformed body whose unit normal n is given by

n = nE, ’ (2:11)

then t= JG En JG (2-12)

FINITE PLANE STRAIN
3. PLANE STRAIN SUPERPOSED ON UNIFORM EXTENSION
The points of the strained body may also be defined by a set of rectangular Cartesian
co-ordinates y;, and we take the y,-axis to be parallel to the x,-axis which is in the undeformed
body, so that the plane y; = 0 corresponds to the plane x; = 0. We now suppose that the
body is deformed by a uniform finite extension parallel to the x;-axis, with constant exten-
sion ratio A, and that subsequently the body receives a finite plane strain parallel to the
(x1,x,) plane. Thus if we choose the moving curvilinear co-ordinate 0, so that #; = y; then

X3 = Y3/ = O5/A, (3-1)
and X, = %,(01,05), Yy =1, (01,041, (3-2)
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ON FINITE PLANE STRAIN 185
greek indices taking the values 1, 2. It follows from (3-1) and (3-2) that
a5 4 O all, a2, 0
gy = Qg Qg (1) , di=[a% a2 0], g= %, (3-3)
0, 0, 0, 0, A |
Ay, 4y O A, 42,0
Gz’j = A12’ A223 0], GV= Az, 4%, 0 , G=4, (3’4)
o, o0, 1 0, 0, 1

where a,;, a*# are the covariant and contravariant metric tensors associated with curvi-
linear co-ordinates ¢, in a plane x; = 0 of the undeformed body; 4,4, 4*# are the covariant
and contravariant metric tensors associated with curvilinear co-ordinates ¢, in a plane
y3 = 0 of the deformed body, and
o=yl A=|4,l (35)
It follows from (2-2), (3-3) and (3-4) that the strain invariants are given by
I, = 2+a*l 4,
I, = 2(4]a) 0,5 4% +- Afa (36)
I; = A%4/a.
These invariants are not, however, independent, for
s AP Afa = (o0,) (o) (6¥%6PF) 0”45, Ala
== €,,65,6" 6 1ar" 4, ,
= d“ﬁA“ﬁ,
where P ’a::()e—“fze“PJAzf“—pz 1 if a=1,p=2
0" " N N/a »\/ A ’ ’
=—1 if a=2,p=1,
= 0 otherwise,
et = 07, (3-8)
% being, as usual, the Kronecker delta. Thus
I, = 22(1, —22) + 1, /A% (3-9)
The tensor BY may be calculated from (2-5), (3-3), (3-4) and (3+6), and is
Bob = (e (67) apv/12—|~e“/’eﬂ"A wAla
= N2+ AA%F|a,
B*3 — O,
B33 = (1, —A2).
It follows from (2-3), (2-4), (3:3), (3-4) and (3-10) that the stress tensor 7% becomes
1% = a*P D BV + A*Pp
2 (0W N4

— 2 AN W7/ 38 /
N2 311“!"1 312)‘1 {_2\/(13)(

and €ap

(3-10)

oW 10w
AN AA ap .
313+A2812)A : (311)
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186 J. E. ADKINS, A. E. GREEN AND R. T. SHIELD
If we put I, =1= /IZ—I—a?‘/"A“ﬂ,} (312)
I, = J = %4/a,
then, from (3-9), I, = 22(I-2%)+J/12, (3-13)
and thestrain-energy function (2-6) reduces to a function of two strain invariants 7, J so that?
W=Ww({,J). (3-14)
ow oW ow oW adl, oW

A 27 . T 2T
Hence o1, oL = ar Tar, a1 — ar

W _ 1oW _ow Wil oW
oI, 2o, aJ oL, 0~ aJ’

and so (3-11) may be written 7% = q*PH+ A**K, (3-15)
2 W ow

where szj-ﬁ, K“—ZQ\/J—a*j, (316)

and Wis given by (3-14). The functions H and K are invariants depending only on / and J,

and we see tha,t (D_'_Azq}p - H, p’t‘IgIP’/AZ — K, (3.17)

where @, ¥, p are given by (2-4) in terms of the strain-energy function (2-6) which is
regarded as a function of the three invariants I, I,, I;. On the other hand, H, K are given
by (3:16) in terms of the strain-energy function (3-14) which is regarded as a function of
the two invariants /, J.

From (2:3), (2-4), (3-3), (3-4) and (3-10) we see that the remaining stress components
7%3 are zero and that

™ = PO+ 2L, —22) F+p
= (22— I+ J/A*) O+ (I—-22—J[A*) H+K, (3-18)
if we also use (3-17).
If the body is incompressible then
J=1 or A4 =a, (3:19)

and W becomes a function of I}, I, or a function of a single invariant I. The stress-strain
relation (3-15) is still valid, but in this case

_odW() ,
H=2=1", (3-20)
and K is a scalar invariant function which has to be determined from the equations of

equilibrium and the boundary conditions. Also, (3:18) becomes

738 = (22— [+ 1/A%) O+ (I—22—1/A%) H+K, (3-21)
where d = QQ—VK%JQ . (3-22)
1

If the strain energy W([,, I,) takes the approximate Mooney form
W, 1,) = C\(1;—3) + Cy(1,—3), (3-23)

+ W also depends on A, but this is assumed to be a known constant.
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ON FINITE PLANE STRAIN 187

where C), C, are constants then, using (3-13), we have
W(I) = (C,4CyA2%) (I—3) —Cy(A2—1)3/22, (3-24)
and therefore  ®=20, H=2(C,+C,y), (3-25)
733 = 202C, +222(1 -2 —1/A*) C,+ K. (3-26)

4. AIRY’S STRESS FUNCTION

From (3-3) and (8-4) we see that the metric tensors of the unstrained and strained bodies
are dependent only on the two co-ordinates f,. Also the base vectors E_, E* are dependent
only on f#, and are parallel to the plane y; = 0. The base vectors E,, E3 are constant in
direction (the y;-axis) and are of unit magnitudes. The stress tensor 77/ which is given by
(3-15) and (3-18) is dependent only on ¢, and, from (2-10),

T, = (44 t, = J(4) T“ﬁEﬁa}
Ty=J(A)ty = J(4) 7K,
so that T is dependent only on ¢,. The equation of equilibrium (2-9) therefore reduces to

T,,=0. - (4-2)

(4:1)

This equation can be satisfied by

| T, =J(4) ey, (4-3)

where x is a vector in the plane y; = 0. If
X = X'HE/;‘: (4.4)
then X,y = X2, Ep, (4-5)
and hence T, = J/(4) % ||, Ep. (4-6)

Covariant differentiation is here with respect to the plane y; = 0 in the deformed body
using Christoffel symbols

Uy = 2420 {dpp,y+ Ayp p— Ay, o} (4:7)
We observe, in passing, that the order of covariant differentiations in this plane is still
immaterial since the Riemann Christoffel tensor in the plane vanishes. From (4:1) and
(4-6) it follows that

78 = &7yt |, (4-8)

and since 7% is symmetrical we may put
X = oty (+9)
Hence 10 = ¢%crbg ||, = e*1ePrg ||, , (4-10)

where ¢ is a scalar invariant function of 4, 6, and is Airy’s stress function for the deformed
body.
Equation (4-10) may be solved for ¢ ||, to give

¢ Hocﬁ’ = €ay€ﬁp7yp = (A/d) <0€acy) (06,6’p) TP, <4°11)
Hence, from (3:15) and (4-11),

¢”aﬁ = (4/a) (Oea'y) (0€ﬁ’p) aypH+eay€ﬁpA7pK
= (d/a) a,,H+ A, K. (412)
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188 J. E. ADKINS, A. E. GREEN AND R. T. SHIELD
For an incompressible body, using (3-19), we see that (4-12) reduces to
¢ llop = aupHIN +4,,K. (413)
We may eliminate K from these equations. Thus
2K+ (1= 1) H = 40 1y = § s = 4 (J(4) 476}, (+14)
50 that 26 5 = Aup® -+ 20,2 (1—02) A, 1 H (+15)
or 26 1% = 034 |16 +{24%7ap, [A%— (1 —12) 0%} H. (4-16)
Also from (3-21) and (4-14) we have
2733 = 2(22 =1+ 1/A*) O+ ([ —22—2/A%) H+¢ ||~ (4-17)

For a Mooney material with strain-energy in the approximate form (3-23), equations
(4-15), (4-16) and (4-17) become, respectively,

26 |l,p = 2(C, +12Cy) {2a,,5/ A2 — (I —22) A g} + A, 58 12, (4-18)
24 |15 = 2(C, +12C,) {24%0a 52> — (1—1%) 031+ 0% ||2, (4-19)
and 279 — 2(31%— 1) C, 4 202(I— 12— 2/A%) C, + |2 (4-20)

Y2k

FIicure 1.

5. FORCE AND COUPLE RESULTANTS

Consider any curve 4B (figure 1) which lies in the plane y; = 0 of the deformed body and
which does not intersect itself, and suppose that positive direction along the curve is from
A to B. The curve separates the plane into two regions 1 and 2 which are immediately
adjacent to 4B, and the force exerted by region 1 on the region 2 across an element ds of
AB is —tds measured per unit length of the y;-axis. The unit normal in the plane y; = 0
at a point of the curve 4B is n —n Ee, (51)
so that, from (2:12), the stress vector t lies in the plane y; = 0 and is given by

_nacTcz

do#
Also Ty = Cap s (5-3)

t
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ON FINITE PLANE STRAIN 189

The total force P exerted by the region 1 on the region 2 across a part AP of the curve
AB, measured per unit length of the y,;-axis, is therefore, using (4:3), (4:4) and (4-9),

Pn, T,
P = JA %ds
p ., dof
:~JA €567 X”’_des
P dek
= xﬁd ds—“)(—epﬁgﬁpEﬁ, (5'4:)

apart from an arbitrary constant vector which may be absorbed into x since this does not
affect the stresses.

The total moment about the y;-axis of the forces exerted by the region 1 on the region 2
across AP, measured per unit length of the y,-axis, is

M — f [Rax, p]dﬁﬂ (55)

where R =RE, =R E* (5-6)

is the position vector of a point on the curve with respect to the origin of the y,-axes. By
integrating (5-5) by parts we have

— Rax]i— [ B, ax] G . (57)
Now, from (4-4) and (5-6), Rax = RyPE AE,
= Royfe, B3
= ReePhe,,¢ B3
— Re$ B3,
and E Ax = Y E, A E;

= ePle, 50, B3 = ¢ E*
Hence, apart from an arbitrary constant which may be absorbed into ¢ without affecting
the stresses, M — (R*$.,—4) B3, (5-8)

and is therefore a couple of magnitude

. =R$ ,—¢ (5-9)

about the y;-axis.
If the curve 4B is a bounding curve of a body and this curve is entirely free from applied
forces, then X =0 (5'10)

at all points of this curve. From (4-4) and (4-9) we see that x = 0 gives

¢,1:O, ¢,2:0 (5°11)

at all points of 4B, and this implies that ¢ is constant on 4B. It follows from (5-9) that the
couple M is zero for all arcs AP along 4B if we remember that (5-9) is adjustable to the
extent of an arbitrary constant. If we have a single boundary curve which is free from
applied stress, ¢ may be taken to be zero on this boundary.

Vor. 246. A. 25
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190 J. E. ADKINS, A. E. GREEN AND R. T. SHIELD
EXACT SOLUTIONS

6. FLEXURE OF CUBOID AND CYLINDER

A number of problems which have been solved by Rivlin (19494, ¢) for incompressible
isotropic bodies can be considered as special cases of plane strain superposed on a uniform
extension. It is instructive to examine one of Rivlin’s problems from the point of view of the
present paper. For this purpose we consider the flexure of a cuboid and we then give the
solution of a generalized version of this problem in which a part of a thick cylindrical shell
is deformed by flexure into part of another cylindrical shell.

Rivlin (19495,¢) considers a cuboid bounded by planes x, =a,, x, = ay; %, = +b;
x5 = +¢, where a;—a, = 2a. The cuboid is deformed symmetrically with respect to the
x;-axis so that:

(i) each plane initially normal to the x;-axis becomes, in the deformed state, a portion
of the curved surface of a cylinder whose axis is the xs-axis;

(ii) planes initially normal to the x,-axis become in the deformed state planes containing
the x;-axis;

(iii) there is a uniform extension A in the direction of the x;-axis.

Using the notation of §3 we take cylindrical polar co-ordinates (r,0,y;) to define the
strained body and we identify the curvilinear system ¢, with these co-ordinates so that

by=r, O0,=0, 0, : ysa} (6:1)
Yy, =rcosl, y,=rsind.
Also, in view of the assumptions (i), (ii) and (iii),

2 =1r), % =g(0), (6-2)

if the x;- and y;-axes coincide. Hence

1
1, 0 ’ 2,0
; S ) (6:3)

0
A = Aob — A =72 —
apf (0, 72) ) 0 l ) re, aoc/? ( 0,

> 7.2

and because of the incompressibility condition (3-19), /' (r) ¢’ () = Ar, which leads, as shown

by Rivlin, to 10 :
J) =D 4B, ¢(0) =5, ' (6-4)
4a Ay —a, r’
where D= A B = 2—71%”_—7%1*'"‘2> (65)

and ry, o (r,>r,) are the radii of the curved surfaces of the deformed body, which are
initially the planes x, = a;, x; = a, respectively. Thus, with the help of (6-4),

1
D2 0 D22 0
doc/? = A2 , ah = D2 ) (6'6)
0, e 0, -

2,2
and, from (3-12), [=2 %—}Jrj)«lzﬂ. (67)
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When the body is incompressible the relevant equations of equilibrium are (4-15), and
the only non-zero Christoffel symbols of the strained body are

1
1 _ 2
I3 =—r, Flz“*;-

Putting @ = 1, f = 2 in (4-15) we find that ¢ depends only on r. Either of the remaining

equations in (4-15) yield d%(% 3_;5) _ H(DA_?—D—%) . (6:8)
But, from (6-7), 3—5= 2(1%—27—515;5),

hence, using also (3-20), d%(%%g) = %*II/K%: %‘V,

which gives %%—f = W(r)+C, (6-9)

where C is a constant.

The resultant normal stress applied over the ends of the deformed cuboid can be found
by using (4-17), and if this resultant stress is zero we then have an equation for A.

When the applied stresses over the curved surfaces of the deformed cylinder are zero,
dg/dr vanishes for r = r,, r = r,, so that, from (6-9),

—C=W(r) =W(r,) =W, (say). (6:10)

From (5-4) we have P=crbp Eg= %%Ez,
so that the resultant force acting on each of the surfaces initially at x, = -4 is the difference
in ~1; %—g—f asr changes from r, to r,, which is zero when the curved surfaces are free from traction.

On the other hand, from (5-9), the couple per unit length of the deformed cylinder acting
on each of these surfaces is

T (6:11)

since d¢/dr vanishes at r, and r,. Thus, using (6-9) and (6-10),

7

M= (3 —r2) W,— f W, (6-12)

7
Stress components may be evaluated from (4:10) and (6-9), but we leave the discussion
at this point.

7. FLEXURE OF INITIALLY CURVED CUBOID

We suppose that the deformed body is the same as that described in the previous section
so that (with the same notation) it consists of part of a cylindrical shell bounded by the
curved surfaces 7 = r;, r = r, (r,>7r,); the planes § = +«, where « is a constant, and the
planes y; = 4-A¢. In the undeformed body the surfaces corresponding to r = r;, r = r, are
concentric cylindrical surfaces of radii k,, &, respectively; the surfaces corresponding to

25-2
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0 = +a are planes through the axis of these concentric cylinders; and the planes y; = 4-A¢
were originally given by x; = +¢. The co-ordinates of the undeformed body are given by

%, =—k+F(r) cosgzﬂ(ﬂ),}

ty = F(r)sin $(0), (1)

where the origins of the x- and y,-axes are separated by a distance £ but the x,- and y,-axes
coincide.

The metric tensors of the deformed body are still given by (6-3), and, by using the incom-
pressibility condition, we now find that

20
$(0) =Dy F(r) = +J(D\r*+By), (7-2)
2__ 2 2,2 242
where p, =M=k p K-k g o (7-3)
n—r; rn—r;

If k,>k,>0 the curvature of the cylindrical surfaces of the undeformed body has the
same sign as the curvature of the cylindrical surfaces of the deformed body; but if £, <k, <0
the undeformed and deformed cylindrical surfaces are curved in opposite directions. In
(7-3) 2a is the thickness of the undeformed cylindrical shell. The upper sign in (7-2) in the
expression for F(r) corresponds to the case £, >£,> 0, whilst the lower sign corresponds to
ky<<k,<0. We suppose that the planes # =+« in the deformed body correspond to the
planes ¢ = -/ in the undeformed body when £;>£,>0, and to the planes ¢ =/ in the
undeformed body when &, <k; <0, so that, for both cases,

Aa(r}—13) = f| K — A3 |. (7-4)

When f = 7 and £,<k, <0, the undeformed body is a complete cylindrical shell which,
after being cut along a plane through its axis, is then deformed into a part of another
cylindrical shell. The deformed shell is complete if ¢ = 7. On the other hand, when a=f=m
and k;>k,> 0, D; = A, and we have the problem of a symmetrical inflation of a cylindrical
tube.

The special case considered in § 6 in which the undeformed body was a cuboid can be
obtained from the above by a limiting process. Thus, putting

ky=k+ay kW =k+a, (7-5)
and letting £ ->oco0 whilst a,, a, remain fixed we see from (7-3) that
D,—>kD, B,—k>+2kB, (7-6)
where D, B are given by (6-5). Hence, from (7-2),
§O) 10 F(r) kS, (7)

where f(r) is given by (6-4), and equation (7-1) then gives

A0
5>ps S0,
in agreement with (6-2).
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Returning to the general case (7-1), where F(r), §(0) are given by (7-2), a straight-
forward calculation yields

D3r? 0
D +B)’ )
R IR IR ] *%)
b D%
D r2+B
D'f’r2 ’ 0
a = D2 , (7-9)
N S
> PDrE)
2 2,2
and hence I= /12+Dlr +8 Dir (7-10)

1y _
D3r? A2(D,r*+B))
The equation for ¢ which corresponds to (6-8) is obtained from (4-15) in the form

o Db Dy .
dr( dr) H{Az(Dlﬂ—l—Bl)— DI’ | , (7-11)

the remaining equation being satisfied if ¢ is a function of r only. From (7:10)

I 2B, { Dir _D1r2+Bl}
&~ D7 LB, BD, 1 B) T DEs

1dg\ _ D,r*+B,dW
so that dr (r dr) B, dr’
1dg D, (7 ,dW )
and therefore Tdr W(r)+ 5+ B1 . Td —I—F : (7-12)

where Fis an arbitrary constant. The traction on each curved surface r = r,, r = r, vanishes
if d¢/dr is zero on these surfaces so that

W(rz) +F =0,
D, 713
W)+ 5" dder+F o, (7:15)
and hence 7, 7, must be connected by the relation
d w
Wiry,) —W(r,) = B—l Rarn dr. (7-14)

If equations (7:13) are satisfied then the couple M per unit length of the deformed cylinder
acting on each end # = 4o of the cylinder is, from (6-11),
M= 4,,— ¢, .
= 3(r}—13) W(ry) ——fhrWdr— Bglfhrdrfr x2%zl/dx,
or M= 3(R—13) Wir,)— ”rWdr+—2% )Y W ar

T2

AW [ 0+ 0B ey W @ (119

= %’(TZMQ) {1+ B
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In the special case when the undeformed body is a cuboid, we see, from (7-6), that
D,/B, 0, and we recover the formula (6-12) for M. .

Further details of the stress distribution may be found from (4-10), (7-12) and (7-13),
but we leave the discussion at this point.

8. (GENERALIZED SHEAR

We consider the deformation of a cuboid which is initially bounded by the faces x; = +a,
X, = b, x, = +¢, where a, b, ¢ are constants, and we examine the possibility of a generalized
shear in which each point moves parallel to the x-direction. If we take x;-axes to coincide
with y-axes, then we assume that

xp =1+ (a), %2 =Yy *3=1Ys
and we identify our moving co-ordinate system 0; with y,. Hence, using the notation of § 3,
A=A =0,5 A=1, a=1,
aaﬂ — (l’ f, ), a(xﬂ — (1 —*—-f,27 ——f,)’ (8.1)
S’ 1S =1
where a dash on f denotes derivative with respect to 0, = y,. Since a = 4 = 1 the incom-
pressibility condition is satisfied. From (3-6), since A = 1,

I=1+al+a?2 =34/ (8-2)
With the help of (8-1) and (8-2) equations (4-15) for ¢ reduce to the two equations

24 2 2
where we recall that H is given by (3-20) and is a function of f’(y,). Equations (8:3) are
compatible if 42

S =0,
or J'H = A+ By,. (8-4)

~ When f’ = constant, which corresponds to simple shear, H is a constant and (8-4) is
satisfied with B = 0. The solution may then be completed in general terms (see Rivlin
1948 d). Otherwise, for a general form of strain energy, and therefore a general form of H,
equation (8-4) becomes a differential equation for f(y,) which may be solved in the usual
manner. This solution is particularly simple when the strain energy takes the approximate
Mooney form (3:23), for then H = 2(C,+C,) and (8-4) becomes

2(01+02)f, = A+ By,,
or S = ky,+3k'y3, (8-5)

where k and £’ are constants. It follows from (8-3) that

U i 1 )2
B‘E—aj/%“ 2(01"1 CZ) (k+ky2) )

¢ ,
5&;3—% =2(C,+G) (k+k Ya)>
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and hence ¢ = 2(Cy+Cy) {(kyp+ B'93) 4, 4K y+-o (683 + 4hK 93+ £ (8:6)
In addition to (8-6) ¢ also contains terms of the form

@' (Yi+y3) + 0y +-cy +d (8:7)

where a’, b’, ¢’, d" are constants. The first two terms in (8-7) represent a uniform hydrostatic
pressure and the linear terms contribute nothing to the stresses. We may determine the
constant hydrostatic pressure by imposing a prescribed value for the term independent of
Y15 Yo in 733 as given by (4-20).

Returning to the case of a general strain-energy function we see from (8-3) and (8-4)

that ¢ has the fc
at¢ has the form ¢ = n(dy,+1Bi3) +4BR+V (1), (8:%)
apart from terms of the type (8:7), where ¥(y,) is a function of y, only determined by the

equation d2 ]/f 4B
2 ’

so that gy% — (A+By,) f—B f fdy,. (8-9)

The solution may be completed when fis determined from (8-4).
It is also of interest to notice that (8-4) may be written

" ,,dW aw
(A+By) /=2 "G

dy,
if we use (3-20) and (8-2), so that
(A+By) f~Bf = W+C, (810)
where C'is a constant. This equation may be integrated in the form
N w+C )
= (A By) [ 4 ety (s-11)

It appears, however, that in most cases it is easier to determine f from (8-4).

APPROXIMATION METHODS

9. COMPLEX CO-ORDINATES IN DEFORMED BODY

The use of complex variables has greatly simplified the formulation and solution of
two-dimensional problems in classical linear elasticity, and it is natural to inquire whether
complex variables may be used for problems of finite plane strain. In the case of finite
deformations, however, we may choose complex co-ordinates in either the undeformed or
the deformed body and we consider the latter case in this section.

We take the y,-axes to coincide with the x,-axes and put

z=y +iyy, Z=y —1y,, (9-1)
and we denote covariant and contravariant base vectors in the system of complex co-

ordinates (z,Z) by A, and A respectively. The position vector R of a point of the deformed
body, which is given by (5-6), may then be written

R = 22A = z A~ (9-2)
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By tensor transformations
. 0z dz
oy yl+0y Y=y +Hiy, = z,
0z 0z

6’ yl+6‘yy2 Y1— 1.7/2—Z

so that complex co-ordinates (z,Z) may also be denoted by z*.
We now take the moving system of co-ordinates ,, to coincide with the system of complex
co-ordinates (z,Z) so that 0, —2l—z, 6,— 22—z | (9-3)

The metric tensors 4,4, A%/ then have the values

Ay =3, Ay = Ay =0, «/A—‘z‘l} (9-4)
A2 =2, AN — 422 — g,
If the components of displacement along the x,-axes are (,v) then
Y1 =% Yo = X9+,
d hence %, +ixg =z—D
and hen 1 =2 | (9-5)
_ %, —ixy, =Zz—D,]
where D=uy+iv, D=u—iv. (9-6)

If the body is incompressible then, from (3-19) and (9-4),
Ja=2A,/4 = $A, (9:7)
Ja= 9(xy, %,) 1a(x1‘|‘1x2a X, —ix,)

and 3(0,,0, ) 5 0(z2)
4026222
2 ( 0z 0z 0z
oD dD 4DJID dDID
Hence PRI A e i i 1-A (9-8)
_(0x\2 | (0x,)\2 3(x1+ix2)}{8(x1~ix2)}1
Also = (FZ—) - (792) o { 0z 0z
_9D (@9 _ )
T 0z ’
oD (0D
Qgp = 75(02 1) ) ( (99)
1 oD dD dDID dDJD
42 :ﬁ{l 9z 0z =T (9252+ 0z dz
dDJD
=+

if we use (9-8) in order to simplify a,,. It follows from (3-12), (9-4) and (9-9) that
I=22+a'? = 244a,/A?

2 40DJD

— 12 N
Btitesz o (9-10)
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Since the components (9-4) of the metric tensor of the deformed body are constants, the
corresponding Christoffel symbols are zero and therefore covariant differentiation in the
deformed body reduces to partial differentiation. If we now put @ =1, § = 1 in equation

4-15) we h
(4-15) we have 9

A2 952 = Ha,,. (9-11)
When « = 2, f = 2 equation (4-15) reduces to the complex conjugate of equation (9-11),
and when « = 1, § = 2 the equation (4-15) is identically satisfied. From (9-9) and (9-11)

we obtain —
d% dD (0D
2070 0D (0L .
A 1=, (ﬁz I)H. (9-12)

The incompressibility condition (9-8), together with equation (9-12) and its complex
conjugate, are the fundamental equations for the functions ¢, D, D.

Denoting the stress components referred to complex co-ordinates in the deformed body
by T*f, we obtain from (4 10)

32 %
22 . __ 12 __ 4 7 7 .
-~ T a5k, Tr—4rt, (9-13)

where a bar over a function denotes the complex conjugate of that function.
If the resultant force P across any arc AP of a curve in the deformed body has com-
ponents (X, Y) along the y,-, y,-axes respectively, then a simple tensor transformation gives

— (X +iY) A+ (X—iY) A, = PA, +PA,. (9-14)

Then remembering (9-4) we may interpret equation (5-4) in complex co-ordinates to get
P2l (9-15)
Also, from (5-9), (9-2) and (9-3), the couple about the origin is
_ 0. ;09 :
M=z5" 125 4. (9-16)

From (9-15), or directly from (5-11), we have at all points of a boundary curve which is

entirely free from applied stress

Y :
2 =0, (9-17)

together with the complex conjugate of this equation.

10. COMPLEX CO-ORDINATES IN DEFORMED BODY : SUCCESSIVE APPROXIMATIONS

We now restrict our attention to plane strain for which A = 1 so that

02¢ oD (0D .
022 0z ((?z I)H’ (10-1)

_ 0DJdD AW _
I=3+4 5 9z H=2 a (10-2)

VoL. 246. A. 26
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Results for classical elasticity are obtained from these equations by neglecting squares and
products of the displacement D and its derivatives with respect to z and Z. Further approxi-
mations may be obtained based on the classical theory as a first approximation. We therefore

put D =¢(°D)+¢2(1D) + ..., (10-3)
where ¢ is a characteristic real parameter in a given problem. From (10-2) and (10-3),
0D JD
I= 3—}—462{0 Do'D | } (10-4)
0z 0z
2°Da°D
_0 2(2 .5
so that H =" H+4¢*(?H) 9 9y T (10-5)
dw(I d2w(I
where OH = 2%, H=2 dlg ) (I =3). (10-6)

The coefficients °H, 2H, ... are therefore constants. We observe that °H = 1 E, where E is
the value of Young’s modulus for strains corresponding to classical theory. If we now put

¢ = OHe{%¢+clp+...}, (10-7)
then equation (10-1) becomes
() , ()
022 69
d°D9°D 2D  ,d'D 2D d'D
2____ _ 2. il i .
(1+k =t )( R +"')((?z LA +) (10-8)

where k, = 42H/°H. Also, with A = 1, the incompressibility condition (9-8) gives

2D 9D (9D 3D %D 9D D 91D
7z oz (3z+0z)+ G(WHTEJF )((?z ey T )

d°D ~ d'D 2D 9D
oy ey e )( e
On equating to zero the various coefficients of ¢ in (10-8) and (10-9) we have
02(%) 39D 9D 9°D .
022 " 0z =9 9z oz =0 (10-10)

0*(1¢) 9D 9°D9°D
022 dz 0z dz°
01D+31E _0°D3°D 9°D3°D }
dz ' 0z 0z 0z 0z 0z
_ {0°D}2_0OF0°D
oz 0z 0z '
Similar equations may be obtained from coeflicients of higher powers of ¢, but we restrict
our attention at present to equations (10-10) and (10-11) which may be regarded as first
and second approximations respectively. The first approximation corresponds to the
classical theory, and the equations for this may be integrated in terms of complex potential
functions €)(z), w(z). Thus -
% = zQ(2) +zQ(z) + w(2) +E(Z),1
D = Qz)—2zQ'(2) -3 (2). J

(10-11)

(10-12)
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Using (10-12), equations (10-11) now become

02(l¢) alD 14 I = — ” " .
D00 Q) - Q@M () +' (D), (10-13)
1D (?ID

DD @-QEP -+ TR @) (101)

The first of these equations may be integrated to give
al ANl= 1% O/ (= = o ’ ”
091D — 2R (z)+1 [@era-["oeved
+0(2) 22 () +0' () Q- QP (1015)

where A(Z) is an arbitrary function of Z, the integral term which is a function of Z only being
added for convenience. From (10-14) and (10-15) it follows that

2209 _an(z)+ 21 ()
+Q"(2) {2 (2) +0' (2) - Q(2)}
Q) (0 (2) 0 () — QU2
+{2Q"(2) +0"(2)} {ZQ"(2) + 0" (?) b

and hence
70— M) +2N (3 +5 () QEra-[0EeE e Hr-EO e (1010
where [(z,z) = {zZQ"(2) +@"(2)} 22 (2) + ' (2) — Q(2)}

HQ (2) + Q' @' (2) +'(2) — Q2)}, (10-17)

and §(2) is a further arbitrary function of z. By integration of (10-16) we may obtain !¢,
but this is not required in applications of the theory. From (10-15) and (10-16)

1D = A(z) —zA'(2) — &' (2) — A, (10-18)
where A(z,2) = 2Q"(2) +3"(2)} {ZQ (2) +0'(2) - Q(2)}
—{Q(2) - Q'(2)}{zQ' (2) +&' (2) — Q(2)}. (10-19)

By introducing the first of equations (10-12) and equation (10-16) into (9-15) we may
now obtain an explicit expression in terms of the complex potential functions for the
resultant force across a curve.

In subsequent sections we shall be concerned with problems which are non-dislocational
in character and the complex potential functions €(z), w(z), A(z) and d(z) must then be
chosen so that the stress and displacement components are single-valued. It follows that
OD,1D, ... and all their derivatives with respect to z and z, and similarly the second and
higher order derivatives of °§, 14, ..., if they exist, must be single-valued at interior points
of the body so that, from (10-12),

[Q(2)], =0, ["(2)].=0, [Q2)]. =[] (10-20)
where [ ], denotes the change in value of the function inside the brackets during a complete

circuit of a contour C lying entirely within the deformed body. Using (10-20) we see from
26-2
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(10-18) and (10-16) that the terms involving €)(z) and w(z) in the expressions for 1D,
02(14) /0z% and 92(1$) [0z dZ do not change in value during a complete circuit of the curve C.
The complex potentials arising in the second approximation must therefore satisfy the
similar conditions

[A(2)].=0, ["(2)],=0, [A@2)], =I[V(Z)]. (10-21)
If the resultant force on a contour C in the deformed body is zero we must also have
[0%/0z], = [0'$/dz], = 0, and the relations (10-20) and (10-21) must then be replaced by

[Q(Z)]c =0, [(1)’(2)]0 = 091
[AZ)], =0, [¥(2)].=0]

For some problems it is convenient to remove the integral terms from (10-16). Replacing

(10-22)

Az) by A(z)-—%r{ﬂ’( )12dz and '(2) by &'(z f Q'(2) 0" (z) dz in (10-16) and (10-18)
we obtain 214 .

5 = Al2) +28'(2) +0'(2) +4T'—2{Q' () (10-23)
1D = A(z) —2A'(2) — 8'(2) — A+ 32{0 (2))2 — f (Q(2)2dz— f 0'(2)a"(z) dz.  (10-24)

The conditions (10-21) for single-valued stresses and displacements, however, now become
[A'(z)], =0, [0"(2)]. =0,
[A(z) —8'(2)], [2 f (Q(2)2dz f 0'(z2)a"(2) dz] .

If, as occurs in some problems, the integral terms are single-valued, these conditions reduce
o (10-21). If, further, the resultant force on the contour C is zero we may again use con-
ditions (10-22).

(10-25)

11. COMPLEX CO-ORDINATES IN UNDEFORMED BODY
For some problems it is more convenient to take complex co-ordinates in the undeformed
body. In this case we put
{ = +ix, =0, Z:xl—ixz———ﬂz, ‘
z=y+iy, = {+D, Z=y,—iy,={+D, }
where the x,-axes and y,-axes still coincide and D is given by (9-6). The metric tensors
a,4, a* are therefore given by

1 _ _ 13
ap=1% a;=ay,y=0, Ja=4i,
a2 =2, qll = g2 =0,

(11-1)

(11-2)
and the incompressibility condition (3-19) becomes
J4 =1/(24), (11-3)

C0ypy,)  10(z2)
VA=50,6,) ~2060)

~5l(1+%) (+3¢) -3¢ o)

where
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oD dD 0DJID dDJD 1
HCIICC '%—F—a—z——l——(f*a—z'—jz—a—czx —1. (].]. 4:)
The metric tensors 4,5 and A*# are now given by
dD (0D 0D (0D
an =7 (g 1) 4n =z (o +1):
_ 1 DD > (11-5)
Ao =1+t ar
AN = A2 = —4)24,,, A2 = 4224,

in which (11-4) has been used to simplify 4,,. From (3-12), (11-2) and (11-5) we have
I=22+444,,
:/12+/%+4%%)%?. (11-6)
Again, using (11-2), (11-5) and (11-6), the equations of equilibrium (4-16) reduce to
20%¢ I} = 224%¢ ||, = A*°H, (11-7)
together with the complex conjugate of this equation. From (11-3) we may obtain by
differentiation relations of the form
Ay Agy A1y, 1 gy — 241,45, = 0, (11-8)
and when these are used to simplify the resulting expressions, (11-5) and (11-7) yield

0% . 9% 04,08 04,09 AnH_ ,
2A123€2 2A113€3Z+—3?x— 1 ﬁ—*— 12 = 0. (11-9)
Bearing in mind the relations (11-5), equation (11-4) together with (11-9) and its complex
conjugate are sufficient to determine the functions ¢, D, D. Moreover, denoting the com-

plex stress components referred to co-ordinates in the undeformed body by 7"#4, we have
from (4-10) T = T2 = — 402 |y, T2 = 4270 | (11-10)

It should be emphasized that 77*# denotes components of the stress tensor across curves in
the deformed body which were originally defined by complex co-ordinates ({,{) in the
undeformed body.

In order to obtain the resultant force P across any arc AP of a curve in the deformed
body, we must express (5-4) in the appropriate form. If v is the displacement vector and

e; and €' are the covariant and contravariant base vectors in the unstrained body we may
write vV = v"ei — Uiei’
. (11-11)
E, —e-+v,;=e-+v e,

where the single line denotes covariant differentiation with respect to the undeformed
body. From (5-4) and (11-11) we now have

P =¢rbp (es+v*|se,). (11-12)

If P has components (X, ¥) along the x,- and x,-axes respectively we have, as before, by
a simple tensor transformation,

P = (X+iY)a,+ (X—iY)a, = Pa,+Pa,, (11-13)
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where a, and a* are now used to denote the covariant and contravariant base vectors in
the complex co-ordinate system ({,{). Hence interpreting (11-12) in terms of complex
co-ordinates and employing (11-3) we obtain

0¢ 0Ddp 9D

P—2ia[3f agﬁi”ﬁﬁ{f} (11-14)

On a boundary which is completely free from applied forces, we therefore have

36 9Ddp oD .
actagaragag — )

This relation, together with its complex conjugate, are again equivalent to

i
but the form (11-15) is frequently more convenient in practice.
The expression (5-7) for the couple may be similarly transformed, and we have, using
(11-11) and (11-4), for the moment per unit length of y;-axis

o (1) ) (1) o

9% _ (11-16)

‘?a?}g? —g. (11-17)

12. COMPLEX CO-ORDINATES IN UNDEFORMED BODY : SUCCESSIVE APPROXIMATIONS

As before we restrict our attention to plane strain for which A =1. Equations (11-4)
and (11-9) may be solved by successive approximations in a similar manner to that used
in § 10. Itis, however, somewhat simpler to derive results directly from those of § 10. From

e~ \"ag)az ot oz
d dDJ dD\ 0
?9?:7555“(“%)3'

so that, solving for d/dz and 3/0z and using (11-4), we obtain

14 oD\ d 0D
vz = (o) ae - ac e o1
19 _(,, 0D\d D3 (121)
mz(*xbf%%'

We observe that the formula (11-14) for the resultant force on an arc of a curve may be
obtained at once from (9-15) and (12-1).
From (10-3) and (11-1)
z={+6¢{°D(z,2)}+e2{1D(z,2)} + ..., (12-2)

and if we express D in the form
D = D' (O} +6{ D/ (G DY+ o (12:3)
we also have z={+e{loD (& O} +e2{1D" (O} + ... (12-4)
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It follows from (12-2) and (12-4) that

D' (5,0 ='D(§ 9 +°D(L,{) a D¢, 9) e (12-5)
From (10-7) and (12-4) we have

&'¢ _ ogy, {90¢ §,Z)+€[al¢ (99 Lone, )32{055‘:(;é }+OD o 32{0¢ C, }]+...}, (12:6)

and if we again use (10-7) we obtain

0°9(z,2) _0°6((,0)

0z i

B ”ro oo _ (12'7)
422 0800 op( p LY o py TILL
Using (10-12), the first equations in (12-5) and (12-7) yield
D'((,8) = Q) —LQ Q) —w' (D),
(12°8)

&3 o+ @@ +3©)
Also, from (10-12), (10-16), (10-18) and the remaining equations in (12-5) and (12-7),
LD'((,0) = A0 —CA'()) —0'() +3A D), (12+9)

PR _ A+ 8OO+ [ @Opa- [ Q07O - 1@ OF-1TED

(12- 10)
where I'({, ) and A({,{) are obtained from (10-17) and (10-19) by replacing z,Zz by ¢,
respectively.

The conditions for single-valued stresses and displacements are again of the forms
(10-20) and (10-21) with (¢, {) replacing (z,z). The results (12-9) and (12-10) are sufficient
for dealing with problems for which either the displacement components or the stresses
are prescribed at a boundary in the undeformed body. For some problems, how-
ever, it is convenient to remove the integral terms from the expression (12-10) by a process

similar to that used in §10. Thus, replacing A({) by A({) — % J’ ¢ (Q(0)2d¢ and 8'(¢) by
{) +J§Q'(§) 0"(¢) d{ we obtain

Q%’Z) = A() + LA (D) +8"() — ¢ QP —4T( O, (12-11)
DD = MO - CAQ) T+ 1AGD + @Oy L [ oy [faQ e a
(12 12)

The conditions for single-valued stresses and displacements are now, however, of the form
(10-25) with ({, {) replacing (z,Z).
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The stress components referred to complex co-ordinates in the deformed body are, from
(9-13) and (12-1), when A = 1, given by

7= T (150 3 )4 e )

= (14 52) 3 (GE) 4 g 32)
Hence using (10-7), (12-3) and (12'5), equations (12-13) become
71— T2 = —soot {5 () +{ 5o () + 5 2 (52) - e (G |+
7= aeott | () + Lol 5)+ T o)~ ag e ] ) (12:14)
= seottlgp (52 + e (52 + o o (82) =" e 2 ) ]+

the two forms of 72 being equivalent on account of (12-1) and (12-7).

(12-13)

13. TRANSFORMATIONS OF THE STRESS AND DISPLACEMENT COMPONENTS

It is sometimes convenient, in applications of the foregoing theory, to obtain the solution
of a problem by the use of a given reference frame, but to express the final results in terms
of a different system of co-ordinates. This may be achieved by means of simple tensor trans-
formations, and we shall summarize the results required for subsequent sections. We recall
that rectangular Cartesian co-ordinates in the undeformed and deformed bodies are denoted
by , and y, respectively, with corresponding complex co-ordinates ({,{) and (z, z), where

{ =" = x, Fixy, Z:§2:x1~ix2,]
z=zl =y, +iy,, Z=2Z2=y,— 1Yy (13-1)
z=1{+D, z=_{_+D. [

The contravariant components of the stress tensor referred to the complex co-ordinates
(z,Z) in the deformed body have already been denoted by 7*f. The corresponding
(physical) stress components referred to the y,-axes are #*#. The contravariant components
of stress in the deformed body along curves which were originally defined by the rectangular
Cartesian co-ordinates x, in the undeformed body are denotedt by ##, and the corre-
sponding contravariant components referred to the complex co-ordinates ({,{) by 7"~
By the use of transformations of the form

T8 :a_gféé_ﬂt’/\,u Tos __a_z_é_z_t/\ (13'2)

b

dx) 0, 9y, 9y,
and the employment of (13-1) we obtain
T — T2 — 122 g 9jp1e
2 } (13-3)
T2 — 11 | g2

1 These are not physical components of stress.
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and TU = T2 — fl_ 22 9ip12,
(13-4)
T12 — t11—|—t22,

from which we may derive the inverse relations

4l = TULT2 9T
422 = — TN _ T2 9712 (13.5)
4it12 — Tll_ T22’

with a similar set of equations corresponding to (13-3). Similarly, by the use of the last of

equations (13-1) and the incompressibility condition in the forms (9-8) and (11-4) we may
obtain (9 D

e (g TR0 ) |
P D) 7 R (14 o a P |
and T T (1—-0—) T11+(‘ZD) T22 2%(1--‘;—?) T2, =
LS TR B B

The equations for a rotation of the frame of reference assume a very simple form in
complex variable notation. Let points in the undeformed body now be referred to a
rectangular Cartesian co-ordinate system x* which is such that the x¥-axis is inclined
at an angle @ to the x,-axis. Then writing {* = x§ +ix¥ we have

¢ = Le0, [F=Ten,

and denoting the complex stress components in the system ({*, {*) by T*%%, a tensor trans-
formation of the form (13-2) yields

T - T2 — g-2i6 TV11 T*12 — T"12, (13-8)

Similarly, for the complex displacement D* in the system ({*, {*) we have
% p
g P
If points in the undeformed body are specified with respect to a polar co-ordinate system
(r,6) we may choose the axes (x{, #) to coincide with the radial and tangential directions
respectively at the point (7,), where { = rei’. Denoting the contravariant componentst

of the stress tensor in the (7, ) system by #*## and the physical displacement vector com-
ponents by u,, u, we have, from (13-8), (13-9) and equations of the type (13-3),

D* — — e 1D, (13-9)

{RIL k22 | 9ipk12 =210 V1L )
t*ll_'_t*ZZ — T’lz’ (13.10)
u,+iu, = e=19 D.
1 These are not physical components of stress.

Vor. 246. A. 27
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Similar results may be obtained for co-ordinate systems chosen with reference to the
deformed body. If polar co-ordinates (r, #) are chosen in the deformed body where z = re?,
then the equations corresponding to (13-10) give the actual physical components of stress
and displacement in polar co-ordinates in terms of 7% and D. Thus, with an obvious
notation for physical components

trr_tﬁﬁ + 2itrt9 = e 20 TII,
toAtyy — T2, (13-11)

S
U, +1uy = e 19D,

14. INFINITE BODY CONTAINING A CIRCULAR HOLE UNDER A UNIFORM TENSION AT INFINITY

We shall now consider the problem of an infinite elastic body subjected to a uniform
tension 7 in the direction of the x,- (or y;-) axis at infinity, and which contains a circular
hole of radius @, the boundary of which is completely free from applied forces. The hole
may either be assumed circular in the undeformed state, in which case the problem is con-
veniently treated by choosing complex co-ordinates in the unstrained body, or it may be
assumed to have such a shape initially that it becomes circular after deformation, in which
case complex co-ordinates in the deformed body become appropriate. The two problems
have a number of features in common, but we shall consider the latter case first, since this
is, in some respects, simpler.

Choosing complex co-ordinates (z,z) in the deformed body, we may, without loss of
generality, assume the centre of the hole to coincide with the origin of co-ordinates, so that
the circular boundary may be described by the equation

2Z = at, | (14-1)
Since this boundary is free from applied stress, we have, from (9-17), the conditions
¢ _ 94 _ s 2
9, gz 0 on z=d’ (14-2)

Also, to ensure a uniform tension 7"in a direction parallel to the y,-axis at infinity, we must
have from (13-4), (9-13) and (9-15)
¢ 0% I 1
R S R AN (o) (142)
for large | z |, since the resultant force on any (large) circuit surrounding the circle is zero.}
We may now assume that D, I, H and ¢ can be expanded in the forms given by (10-3),
(10-4), (10-5) and (10-7) respectively, and we shall take the real parameter ¢ to have the
value T/(4°H) = 3T/(4F). From the boundary conditions (14-2) and (14-3) we then have

(*g) _o("d) _

72——’3*2_—“0 (n=0,1,2,...) on zzZ=d? (14-4)
(%) _0*(%) _ _9*(°¢) _ _ 1)
and 022~ 9z2 0z0z 1—i—O(lz |2)’
(14-5)

*("¢) _ 0%("g) __ 9*("9) 1

= Ll L = 0( ) 0

0z2 0z2 0z0z |z |? (n>0)

1 Equations (10-7), (10-12), (10-16) and (10-22) are also used to determine the order of magnitude of
terms vanishing at infinity.
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for large | z |, where % and !¢ may be expressed in terms of the complex potential functions
Q(z2), w(z), A(z) and d(z) by the equations of § 10. Using (10-12), the boundary conditions
for the first approximation become

Q) +zQ (2) +0'(z) =0 on 2z = a2, (14-6)
and ﬁ@y+ay@y+w@)=z—z+oﬁ%ﬂ, (14-7)

for large | z|. Remembering the conditions (10-22), equations (14-7) will be satisfied if
the potential functions €)(z) and v(z) have the forms

Qz) = §z+ Z bz

. (14-8)

w(z) = —4§22+Az+Blogz+ X ¢,z7,
r=1 .

7y Yry

where b,, ¢,, 4 and B are constants. Introducing these expressions into (14+6), we find that
this relation can only be satisfied if '

b, = d?, b,=0 (r+l),
Cp=—%a* ¢,=0 (r+2),
| A=0, B=-—a
and equations (14-8) then reduce to

m@=%@+%3,
(14:9)

1/, ” at
v(z) =——§(z +2a logz—i—?).

Since the boundary conditions are given in terms of the applied forces, and since the
integral terms in (10-25) are here single-valued, it is convenient in obtaining the second
approximation terms to use the forms for ¢ and 1D given by (10-23) and (10-24) respec-
tively. From (14-9) and (10-23) we have

72— M) +2N @)+ (D
1

‘ 2z 222
i, %
+2{2Z zta (z_i—z2 23)

1 1 1 3a8
a4(2§2+§§)+ (z5+ z4+zzz3+z322)*z324}’ (14-10)

and (14-4) and (14-5) then yield the conditions

— - 4 '
A(z)—i—zA’(Z)+8’(‘z’)—i—a2+3z+a =0 on zz=d

_ (14-11)
A(Z)+2ZA (2) +8'(2) = i—{— 0(! |) as |z|->o0.

27-2
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The determination of complex potential functions which satisfy (14-11) and yield single-
valued expressions for the stresses and displacements proceeds exactly as for the first

approximation. We obtain
1 4a%  8a*
Az) = "§(Z+ z +?)’
(14-12)

6
d(z) =i( Zazlogz+ _|_3a)

The stress functions % and !¢ may now be found from (10-12), (14-9), (14-10) and (14-12),
and introducing the resulting expressions into (9-13), with A = 1, we find for the complex
stress components referred to co-ordinates in the deformed body,

4
o) 4]
Z
37Ta% /1 322 122 4 10 6 6 1 6a’b
T4E (2 zs+ ) (23+Z4 z5)+“(?_22_5_ﬁ_23§5)+23€5]}’

(14-13)
1 1
= ri-eft-3)]

3Ta? 1 4z 4z 1 6 6 8 3 3 9ab

S of L O Oy 4 S , ° , 9, Y4
8E (22+22 z3 23) ta (2222+z4+24) 4 (Z3Z3+z422+z224) +z424 }
(14-14)
Now since from (13-4) 7% is the sum of the principal stresses, it is invariant under
rotations of axes, and therefore, on the boundary of the hole zZ = 42, on which the normal

and shear stresses are zero, it gives the hoop stress. Introducing polar co-ordinates (r, f)
in the deformed body by means of the relations

+

Yy, =rcost, y,=rsind, (14-15)
we obtain from (14-14) for the hoop stress on zz = a?
[712],_, — T{(1—20052€) 5(1—200326’—#2(:0546’) (14-16)
On the axes of symmetry this expression reduces to
3T
2] _24 - _
[T?],_,= T{l 4E} at =0 and 0=,
T (14-17)
and [T'?],.,= 3T{1 +5E} at =147 and 0= 3n.

The complex displacement functions °D and 1D are found by introducing (14-9) and
(14-12) into the second of equations (10-12) and (10-24) respectively. We obtain

4
0D(z,%) = z+az(%+%+§)—%, (14-18)
2
1D(z,z) = {z+a2(§——g+ 2;3 )

10 5 30 15 26\ 3a®
——%—a(3—|—_ + _+T_?)+1a6(z3zz+zzz3+zz4_§)—§?*}' (14:19)
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The real components of displacement in the co-ordinate system y, may be obtained from
these expressions in the usual manner by the use of (10-3), (9-1) and (9-6) and the separation
of real and imaginary parts in the resulting equations. Alternatively, by making use of the
last of equations (13-11) we may express the results in terms of the polar co-ordinate system
(r,6). At the boundary of the hole where r = a, the displacement components #,, u, in the
radial and tangential directions respectively assume the comparatively simple forms

[w],.,— 37&{(1%—2c0520)4—1§%(15 40cos204-8cos4eﬁ
o T T (14-20)
a . :
(] - = Yol {1 20E(5 cos 20)}sm 20.

We shall now consider the case where the hole is initially circular, and for this purpose we
choose complex co-ordinates (,{) in the undeformed body, and employ the notation and
equations of §§11 and 12. It may be shown that the first approximation solution is
unchanged apart from notation so that from (14-9)

o) =3 (c+ %), e
w() = __<§2+2a2 10g§+€2)

To ensure a uniform tension of magnitude 7"in the direction of the x,- (or y,-) axis at infinity
we again have from (13-4) W _T2_Te_ T, (14-22)

or, in terms of complex co-ordinates in the deformed body,

T . _
2L =2 (z2—2) = OH(z— @+0QI) (14-23)

for large | z|. Hence, from (12-4), (10-7) and (14-23),
30
Pt
» ¢ (14-24)
9P _op(t.?)—0D' (L. T
0z =D (€3£> D (g,g),
for large | {|, and using (12-8) and (14-21) the second of equations (14-24) becomes

¢ ={—¢ (14-25)

for large | {|. Combining (14-25) with (14‘21) and (12-11) we have for large | {|
AL +EA () +8'(0) = 3—1L. (14-26)
The terms which are neglected in (14-24), (14-25) and (14-26) are O(1/|{|) for large | {]|.

The conditions at the boundary of the hole may be obtained by equating to zero the right-
hand side of (12-11). Making use of (14-21) we thus have on {{ = a2

A+ O+ Q) — - +5-% 0. (14:27)

4 a2 at

27-3
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Moreover, since the integral terms in (10-25) (with ({,{) written for (z,Z)), are single-
valued, and since the resultant force at the hole is zero, the conditions for single-valued
stresses and displacements reduce to the form (10-22). Proceeding as in the previous
example, we find that the complex potential functions satisfying (14:26) and (14:27) and
the conditions for single-valued stresses and displacements are given by

A = —5(e+2-%5),
agt st (14-28)
5(¢) = (§2+6a210g§+ g; —C—‘ﬁ)

These relations, with (12-11) and (12-12), are sufficient to determine !¢ and !D’ since the
first approximation functions €({), »({), % and °D’ are given by (14-21) and (12-8). The
complex stress components referred to co-ordinates in the undeformed body may then be
found from equations (11-10). For some purposes, however, it is more useful to know the
stress components referred to co-ordinates in the deformed body, and these may be obtained
by introducing the expressions obtained for 0°/dz, d'¢/dz, °D and °D into (12:14). Then
remembering (12-5), this process yields

7= 71~ “2(c2+2c3)+3§4]
- (c%“gg“%z) (§§3+c22€2 zcof)

)

+ir (c2+§2)+ (§2Z2+ c3+csz"z2rzg4> (é%*%@*i%)*’%]}
(14-29)

(oot en) g

and from these relations we may obtain by means of (13-5) the physical components of
stress referred to the y -axes. Moreover, since from (13-4) 772 is the sum of the principal
(physical) components of stress, it is invariant under rotations of axes, and therefore on the
boundary of the hole {{ = a? on which the normal and shear stresses are zero, it gives the
hoop stress. Introducing polar co-ordinates (r,) in the unstrained body by means of the
relation { = rei’ we obtain for the hoop stress

[T12],_, = T{(1—200s26’)—[—

41’7;(1 + 2 cos 20 —2 cos 40)} (14-30)

On the axes of symmetry this expression simplifies to

8T
4F

3T
4F

[le],=a=—T{1— } at 0=0 and 0=,

(14-31)

[T12]M—-3T{ } at =17 and 0=3in.
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It is evident from (14-21) and the first of equations (12-8) that the first approximation
displacement function °D’ is obtained by replacing (z,Z) by ({,{) in (14-18). For the second
order displacement function 1D’ we have, from (12-12), (14-21) and (14-28),

1 1 2, 3¢ 20
e -3-of-

1 6 9 2 2’7C) ( 34) 3a8}

S R A ~oE) =22t (14-32
e ar ot o) el e ee o) ek (4
Employing these expressions for D" and D’ in (12-3), the real components of displacement
in the co-ordinate system x, may be obtained by the separation of real and imaginary parts.
Alternatively, by means of the last of equations (13-10) we may express the results in terms
of the polar co-ordinate system (r, §). At the boundary of the hole {{ = a? the displacement
components #,, #, in the radial and tangential directions respectively reduce to

37a T
[4,],—-, = B {(1 +2cos 26’)+40E(45 40cos2t9—|—8cos40):
3Ta T (14-33)
[2g],—0 = Yl {1 —m(5—cos 20)}sin 20.

15. EXTENSION OF AN INFINITE ELASTIC BODY CONTAINING A CIRCULAR RIGID INCLUSION

We shall now consider the two-dimensional problem in which an elastic body, which is
subjected to a uniform tension 7 in the direction of the y,- (or x;-) axis at infinity contains
a circular rigid inclusion of radius a. We shall suppose the elastic material to adhere to the
inclusion so that at this boundary there is no relative movement of the elastic and rigid
bodies. Since the displacement components are zero at the surface of the inclusion, we may
choose complex co-ordinates either in the undeformed or in the deformed body. We shall,
however, make the latter choice for the co-ordinate system (z,Z) and employ the notation
and methods of §§ 9 and 10, since the resulting equations then assume simpler forms.

At the boundary of the inclusion zz = 42, the displacement components are zero and we

therefore have "D="D=0 (n=0,1,2,...), (15°1)

while to ensure a uniform tension of magnitude 7" in the direction of the y,-axis at infinity
we have, as in the previous section, with ¢ = T/(4°H) = 3T/(4E)

PP P o L),

02 T 92 T 020z
>(*g) _*(*¢) _0*("¢) _ H( 1
0(| ) (n>0),

022 — 9z2  0z0z  T\|z|?

(15-2)

for large |z |. Expressing °D and % in terms of the complex potential functions Q(2) and
w(z) by means of (10-12), we may write, from (15-1) and (15-2),

Qz) —2zQ'(z2) —w'(Z) =0 on zzZ=a? (15-3)

and Q@) +2Q(2) +'(2) = Z— 2+ o(l—lz—l), (15-4)
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for large | z|. Since there is no resultant force on the inclusion the conditions (10-22) must
apply on the circle zz = ¢? and in order to satisfy (15-4) we may therefore assume expansions
of the form (14-8) for €)(z) and w(z). Introducing these expressions into (15-3), we find that
the boundary conditions on zZ = a? can only be satisfied if

b, =0 (r>1), ¢, =0 (r==2),

A—B—o,
by =—a%, ¢, = jat,
so that equations (14-8) reduce to
1/ 22 1/, a
Q(2) _é( _—Z—), 0(2) ——é(z _Zi) (15°5)

Since the boundary conditions at the surface of the inclusion involve the displacement
components, the determination of A(z) and d(z) is simplified by using the forms (10-16)
and (10-18) for !¢ and 1D. When the solutions (15-5) are substituted in these equations the
boundary conditions (15-1) and (15-2) for » = 1 become

A(z)—zA'(Z)—8'(zZ) =0 on 2Z=a? (15-6)
and A@Q+ZBKZ)+5KZ)+%Z::Oﬁ%j) (15°7)

for large | z|. Equations (15-6) and (15-7), together with the conditions (10-22), yield
A(z) = —3%z, 0(z) =0. (15-8)

The stress functions %) and !¢, and the stress components 7% referred to complex co-
ordinates in the deformed body may be found as before from (10-12), (10-16) and (9-13),
and the stresses at the surface of the inclusion may then be obtained in a convenient form
by means of (13-11). This process yields

\

= 1T{l +2c0329~£(3—2c054ﬁ)},

E

tagmgT{l¢2c:0320—|—8T (15-9)

i (5—6(;0540)}, [

t,y =— T'sin 20,

> lpp and ¢, are the stress components referred to polar co-ordinates (r,0) in the
deformed body, and evaluated at the surface of the inclusion where r = a.

The displacement functions °D and 1D are readily obtained from (155), (15-8), (10-12)
and (10-18), and from these results, with (10-3) and the last of equations (13-11), we may
determine the displacement components u,, 4, referred to the polar co-ordinate system

(r,0). We thus have
3Tr a? 3T 3a* 2a?
U= 1F (1—7) { 0s20——8E( e 4 00540)}

3Tr a? 37Ta? a? .
Uy — _—IE_‘(I 3 ){1+ S 2Er2( ﬁ)COSQﬁ}SIHQH.

where ¢

(15-10)
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This paper arose from researches commenced independently by A.E.G. and R.T.S.
at the University of Durham and by J. E.A. working on behalf of the British Rubber
Producers’ Research Association, the final stages of the work being carried out conjointly.
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